Application of a Modified Homotopy Perturbation Method for Calculation of Secular Axial Frequencies in a Nonlinear Ion Trap with Hexapole, Octopole and Decapole Superpositions

نویسنده

  • Alireza Doroudi
چکیده

Sevugarajan and Menon [4-6] have studied the nonlinear Paul ion trap. They have applied the Lindstedt-Poincare technique, the modified Lindstedt-Poincare technique and the multiple scales perturbation technique for solving the nonlinear equation of ion motion in nonlinear ion trap. Also, in two previous studies [7,8] done on nonlinear ion traps by one of the present authors, the homotopy perturbation method was used to study the secular frequencies in nonlinear ion traps. When the hexapole superposition is considered, the resulting nonlinear equation has a quadratic nonlinearity and we know that the angular frequency for positive amplitudes is different from the angular frequency for negative amplitudes in nonlinear oscillator with quadratic nonlinearity. In all the above studies [4-8] the assumption is that the angular frequency for positive amplitudes is equal to the angular frequency for negative amplitudes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Vibration Analysis of a Nonlinear Beam Using Homotopy and Modified Lindstedt-Poincare Methods

In this paper, homotopy perturbation and modified Lindstedt-Poincare methods are employed for nonlinear free vibrational analysis of simply supported and double-clamped beams subjected to axial loads. Mid-plane stretching effect has also been accounted in the model. Galerkin's decomposition technique is implemented to convert the dimensionless equation of the motion to nonlinear ordinary differ...

متن کامل

Vibration Analysis of a Nonlinear Beam Under Axial Force by Homotopy Analysis Method

In this paper, Homotopy Analysis Method is used to analyze free non-linear vibrations of a beam simply supported by pinned ends under axial force. Mid-plane stretching is also considered for dynamic equation extracted for the beam. Galerkin decomposition technique is used to transform a partial dimensionless nonlinear differential equation of dynamic motion into an ordinary nonlinear differenti...

متن کامل

Nonlinear Vibration and Stability Analysis of Beam on the Variable Viscoelastic Foundation

The aim of this study is the investigation of the large amplitude deflection of an Euler-Bernoulli beam subjected to an axial load on a viscoelastic foundation with the strong damping. In order to achieve this purpose, the beam nonlinear frequency has been calculated by homotopy perturbation method (HPM) and Hamilton Approach (HA) and it was compared by the exact solutions for the different bou...

متن کامل

A Solution of Riccati Nonlinear Differential Equation using Enhanced Homotopy Perturbation Method (EHPM)

Homotopy Perturbation Method is an effective method to find a solution of a nonlinear differential equation, subjected to a set of boundary condition. In this method a nonlinear and complex differential equation is transformed to series of linear and nonlinear and almost simpler differential equations. These set of equations are then solved secularly. Finally a linear combination of the solutio...

متن کامل

Solving infinite system of nonlinear integral equations by using ‎F-‎generalized Meir-Keeler condensing operators, measure of noncompactness and modified homotopy perturbation.

In this article to prove existence of solution of infinite system of nonlinear integral equations, we consider the space of solution containing all convergence sequences with a finite limit, as with a suitable norm is a Banach space. By creating a generalization of Meir-Keeler condensing operators which is named as F-generalized Meir-Keeler condensing operators and measure of noncompactness, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012